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A local modal/perturbational method is described which enables estimates to be made of
the statistics of frequency response functions of a system whose properties are uncertain. The
method is computationally very e$cient, providing these estimates at little cost above that
required to perform a single deterministic frequency response prediction. Such an approach
is typically required when there is signi"cant uncertainty or variability in the properties of
the system under consideration. This would often be at higher frequencies, where the
dynamic behaviour becomes increasingly sensitive to small changes in system properties, but
not at frequencies high enough such that broad-brush statistical methods, such as statistical
energy analysis, are appropriate.

In the approach the system is divided into subsystems. The frequency response of
the baseline system is found using modal analysis. The global modes of the baseline
system are found in terms of the subsystem modes using component mode synthesis.
Uncertainty is then assumed to exist in the local modal properties of the subsystems.
A perturbation is found which relates small changes in the local modal properties to those
in the global modal properties, enabling the frequency response of the perturbed system
to be estimated. Finally, a Monte Carlo simulation is used to estimate the frequency
response function statistics. Numerical results are presented for a system comprising two
spring-coupled rods.

( 2001 Academic Press
1. INTRODUCTION

Di!erent physical realizations of a manufactured product have physical and geometric
properties which, while similar, inevitably di!er in detail. A number of factors cause this
variability. These include normal manufacturing variations in component dimensions,
material properties, joint properties, etc., variations in environmental conditions such as
ambient temperature, aging, wear, and variations in operating conditions.

The inherent variability in the properties of the system produces consequent variability in
dynamic response, such as the frequency response function (FRF). The dynamic variability
becomes larger at higher frequencies, especially in complex, built-up structures, because of
0022-460X/01/200793#19 $35.00/0 ( 2001 Academic Press
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the increasing sensitivity of the dynamic behaviour to even small variations in system
properties. In a similar manner, numerical predictions are subject to uncertainty in the
physical and geometric properties or the boundary conditions of a given system: these
cannot be known exactly. Although model re"nement, updating and parameter estimation
may improve the agreement between predictions and a single, speci"c realization of the
system, this is of little value if the next example of the product is not identical to the "rst.

Thus, at higher frequencies, in what might be termed the &&mid-frequency'' range, a single
&&exact'', deterministic prediction (e.g., by way of "nite element analysis (FEA)) is not able to
describe accurately the behaviour of all possible physical realizations of a system which
share the same nominal properties. Instead, the engineer who is trying to model or design
for noise and vibration behaviour may need to consider this variability: a stochastic
approach is required. He or she should consider the FRFs of an ensemble of systems, the
variability of these FRFs and their statistics. These statistics include the baseline FRF (i.e.,
that of the baseline system, the engineer's &&best guess''), the mean, minimum, maximum,
variance and so on. While high frequency, stochastic approaches exist (e.g., statistical energy
analysis (SEA) [1]), these are broad-brush, and lose all details of the response.

In this paper, a local modal/perturbational (LM/P) method for such &&mid-frequency''
vibration analysis is described. The aim is to predict the baseline FRF and the statistics of
the FRFs of an ensemble of systems whose detailed properties vary randomly about the
baseline values. The method follows that used in reference [2] to form energy #ow models of
systems.

The system is assumed to be constructed from a number of connected subsystems. The
subsystems are modelled in terms of their local modes using component mode synthesis
(CMS) [3]. A "xed interface CMS approach is adopted in this paper. The baseline response
is found by assembling the subsystems and solving for the global modes of vibration.
Ensemble statistics are estimated by assuming that the properties of the members of
the ensemble vary randomly in some way. In particular, in the LM/P method which is
described here, it is assumed that the local modal properties of each component subsystem
vary randomly and a perturbation analysis is used to obtain the corresponding variations in
the global modal properties. A Monte Carlo simulation is then used to estimate the
response statistics. This is in contrast to more traditional stochastic "nite element
approaches [4], where elements in the sti!ness and/or mass matrices of the system vary
randomly.

One major consideration is that of computational cost. In the mid-frequency range the
system will typically be large and complex so that it is costly to perform even the single FEA
of the baseline system. It is not practical to repeat such an analysis many times over for
di!erent values of system properties in an attempt to estimate the response statistics. In this
regard, the LM/P approach is very e$cient and the response statistics can be estimated for
very little cost above that required to perform the analysis of the baseline system.

In the next section the LM/P method for mid-frequency FRF estimation is described. The
application to a system comprising two coupled rods is then considered as a simple
numerical example.

2. MID-FREQUENCY VIBRATION ANALYSIS AND THE LM/P METHOD

The aim of a mid-frequency analysis is to predict the FRF statistics of an ensemble of
systems whose properties vary randomly. The baseline response (i.e., the response of some
nominal, baseline system) is found and so, too, are the statistics of the responses (e.g., mean
response, maximum response, variance, percentiles, etc.) of the ensemble member systems.
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A mid-frequency model therefore incorporates some variability in system properties and
therefore di!ers from a low-frequency, deterministic analysis. However, the degree of variability
is not as wide as that assumed in a high-frequency, statistical approach such as SEA.

In its simplest form, a mid-frequency FRF analysis follows the steps indicated in
Figure 1(a). Given the physical properties of the structure, a global modal analysis is
performed. This would typically involve a global FEA of the system. The desired FRF is
then found by modal summation. If there is uncertainty in the system's properties then, in
principle, a Monte Carlo simulation can be performed: the properties are allowed to vary
randomly and the analysis process repeated many times. The statistics of the FRFs are then
inferred from the statistics of the sample. This approach is impractical because of the large
computational expense incurred in repeating the full analysis many times.

It is more e$cient computationally, and quite natural in built-up structures, to divide the
system into subsystems which are joined together at boundaries or interfaces. The steps in
the analysis then become those indicated in Figure 1(b). Each subsystem is described by its
local modes using CMS. Again the component modes will typically be found using FEA.
The global modal properties can then be found by assembling the subsystem modal models.
The computational e!ort is signi"cantly reduced because the global eigenvalue problem is
much smaller when written in terms of local modes: relatively few component modes are
required to describe the subsystem behaviour. Thus, rather than solving one large
eigenvalue problem, the solutions to a number of smaller eigenvalue problems are required.
Another advantage is that large structures are often constructed from a number of
component subsystems whose properties vary randomly but independently. In this case, the
local modal analysis for a subsystem need only be repeated when the properties of that
subsystem vary. However, despite the reduction in computational expense, the cost of a full
Monte Carlo simulation is still generally prohibitive.

The most computationally expensive steps in the analysis are indicated in Figure 1(b) and
are the local FEA of each subsystem, the eigensolution to "nd the component modes and
assembling the subsystem models and solving for the global modes of vibration.

In the local modal/perturbational approach indicated in Figure 1(c) these steps are
removed in the following ways.

f Variability is assumed to exist in the local modal properties of each subsystem rather than
in their physical properties (i.e., material and geometric properties) directly. Of course, the
two are related, since the physical properties uniquely de"ne the local modal properties.
However, including variability in this manner avoids the computational expense
associated with recalculating the local modes.

f A perturbational relationship is found that relates the global and local modal properties.
This avoids having to solve the global eigenvalue problem for every member of the sample
in the Monte Carlo simulation. Here a linear perturbation is used (e.g., changes in the
global natural frequencies and mode shapes are related to changes in the local natural
frequencies using a Taylor series expansion) as described below.

As a result, the FRF for each member of the Monte Carlo simulation (apart from the
baseline response) can be found at a trivial cost and the ensemble statistics can be found in
a small fraction of the time it takes to calculate the baseline response.

In summary, the steps are as follows:

f The system is divided into subsystems joined together at interfaces.
f The subsystems are described in terms of their local modes of vibration. Here, the modes

are taken to be those obtained when the interfaces are clamped, although other
approaches are possible.



Figure 1. Mid-frequency FRF estimation using (a) global modes direct, (b) local and global modes and (c) LM/P
method.
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f The global modes of vibration are found in terms of the local modes using component
mode synthesis.

f The response of the baseline system is found by summing contributions from each of the
global modes of vibration.

f The modal properties of the subsystems are assumed to be random with known statistical
distributions.

f A perturbation is found which relates (small) changes in the subsystem component modal
properties to consequent changes in the global modal properties. This avoids the need to
solve the global eigenvalue problem for each member of the sample considered.

f A Monte Carlo simulation is then performed: a (typically) large sample of systems is
chosen, the properties of the members of this sample varying at random; the global modal
properties and hence the response of each member of the sample is calculated.

f The statistics of the response are then inferred from the statistics of the responses of the
chosen sample.

In the following, these steps are described in more detail. The emphasis is placed on the
application of the LM/P method to discrete models, although comments are made
regarding continuous models. An example application is presented in the next section.

2.1. THE SYSTEM, SUBSYSTEMS AND DEGREES OF FREEDOM

The system is divided into a number of subsystems joined together at boundaries or
interfaces.

2.1.1. Discrete models

In a discrete model the response is described by a vector of physical degrees of freedom w,
which gives the displacements and/or rotations at the various response points. In a "nite
element model these are typically the locations of the nodes. Those degrees of freedom lying
in the ith subsystem are denoted by w(i). In the absence of damping, the equation of motion
of the ith subsystem can then be written as

M(i)
w

wK (i)#K(i)
w

w(i)"f, (1)

where M(i)
w

and K(i)
w

are the mass and sti!ness matrices in physical co-ordinates and f is
a vector of applied forces (a list of symbols is given in Appendix A).

2.1.2. Continuous models

In a continuous model the displacement w(i) (x
i
) is a continuous function of position x

i
in

the ith subsystem. In the absence of damping, the equation of motion now takes the form

o(i) (x
i
)wK (i)#¸(i)(x

i
)w(i)"f (x

i
), (2)

where o(i) is the mass density, ¸(i) a di!erential (sti!ness) operator and f the applied force.

2.2. SUBSYSTEM MODES: COMPONENT MODE SYNTHESIS

Each subsystem is modelled in turn using component mode synthesis (CMS) [3]. Here,
and in [2], the subsystem response is decomposed into modes of the following types,
although other approaches are possible. The ,xed interface component modes are the modes
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of vibration when the component interfaces are clamped. They are given by the
eigensolutions to equations (1) or (2) assuming free vibration and time-harmonic behaviour
and with all the interface degrees of freedom set to zero. These modes are assumed to be
mass normalized. In the subsequent analysis, a discrete model is then used: the physical
response is approximated by assuming that only a "nite number of component modes gives
signi"cant contributions to the total response in the frequency range of interest. This will
usually lead to a substantial reduction in the number of degrees of freedom of a subsystem,
especially when a (possibly large) "nite element model is used to calculate the component
modes. The constraint modes are the deformed shapes obtained when each boundary degree
of freedom is given a unit displacement (or rotation), with the other boundary degrees of
freedom remaining "xed. These constraint modes enforce compatibility of the motions of
the subsystems at their interfaces. Other functions can also be included in the subsystem
description [3].

The response of the ith subsystem is then given in terms of vectors q(i) of compo-
nent modal degrees of freedom (i.e., both "xed interface component modes and
constraint modes), which is partitioned into "xed interface and constraint degrees of
freedom as

q(i)"G
q(i)
f

) ) ) ) ) )

q(i)
c
H . (3)

One advantage of the component mode approach is that a subsystem can be modelled using
fewer degrees of freedom than would exist in a full "nite element model, thus reducing
computation expense. A second advantage for statistical vibration analysis is that it "ts
neatly within the SEA philosophy, in which the vibrational behaviour of a structure arises
from the interaction of modal behaviours in the various subsystems. The third advantage
arises because it gives an intuitive and computationally e$cient way of including
uncertainty, as discussed below.

2.2.1. Discrete models

The physical degrees of freedom can be related to the component modal degrees of
freedom by

w(i)"S(i)q(i), (4)

where q(i) is a vector of retained component modal degrees of freedom and where S(i),
a transformation matrix, is the component modal matrix. The equations of motion for the
subsystem can thus be transformed from physical degrees of freedom w(i) to component
modal degrees of freedom q(i) using the transformation matrix S(i). The mass and sti!ness
matrices M(i)

w
and K(i)

w
of equation (1) written in terms of physical degrees of freedom can

similarly be transformed, so that the mass and sti!ness matrices for the subsystem in local
modal co-ordinates become

M(i)"S(i)TM(i)
w

S(i), K(i)"S(i)TK(i)
w

S(i), (5)

where T denotes the transpose. The matrices have special structures so that

M(i)"C
I

m(i)T
fc

m(i)
fc

m(i)
cc
D, K(i)"C

diag(j(i)
j

)

0T
0

k(i)
cc
D , (6)



ESTIMATION OF FRF STATISTICS 799
where I is the identity matrix (since the local modes are mass normalized), m
fc

is a coupling
mass matrix, m

cc
and k

cc
are constraint mass and sti!ness matrices, diag(. ) represents

a diagonal matrix and where j(i)
j

are the component modal eigenvalues. More details can be
found in references [3, 5], for example.

2.2.2. Continuous models

For a continuous model the displacement is a continuous function of position so that

w (x)"S (x)q, (7)

where S is a row vector of mode shape amplitudes. The mass and sti!ness matrices are now
given by

M(i)"Po (x)ST(x) S (x) dx, K(i)"PST(x)¸(x)S(x) dx (8)

and once again have the form of equation (6). The sti!ness matrix is often found instead
from potential energy considerations.

2.3. GLOBAL MODAL ANALYSIS OF THE BASELINE SYSTEM

The global modes are found by assembling the discrete local modal models and solving
the resulting eigenproblem. A vector q of component modal degrees of freedom is de"ned.
This contains the "xed interface and constraint modes q(i) for all subsystems. Here the
components of q are ordered so that q can be partitioned as

q"G
q
f

) ) ) ) ) )

q
c
H , (9)

where q
f

are the "xed interface modal degrees of freedom and q
c
are the constraint modes.

The equations of free vibration are of the form

MqK#Kq"0,

M"C
I

mT
fc

m
fc

m
cc
D, K"C

diag(j(i)
j
)

0T

0

k
cc
D,

(10)

where m
fc

is a coupling mass matrix, m
cc

and k
cc

are constraint mass and sti!ness matrices
and where j(i)

j
are the component modal eigenvalues ordered in an appropriate way. These

matrices are found by assembling the subsystem component mode mass and sti!ness
matrices given above.

The global modal properties can be found from this eigenvalue problem. This results in
the global eigenvalues j

j
(i.e., the squares of the global natural frequencies) and the global

mode shapes. These global mode shapes relate the component modal degrees of freedom
q to the global modal degrees of freedom y by

q"Ty, (11)
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where the columns of T give the mode shapes, expressed in terms of the subsystem
component modes. The jth column of T contains the jth global mode shape /

j
in terms of

component modal degrees of freedom. These mode shapes are assumed to be mass
normalized.

2.3.1. Discrete models

The transformation matrices S(i) are assembled to "nd the matrix S such that

w"Sq (12)

is a transformation relating the global physical degrees of freedom w to the component
modal degrees of freedom q.

In summary, three sets of global co-ordinates are used. These are

physical degrees of freedom: w,

component modal degrees of freedom: q, (13)

global modal degrees of freedom: y.

Three matrices are used to transform from one set to another, namely

w"Sq, q"Ty, w"Py. (14)

These matrices are found by solving the local eigenvalue problems (S) and the global
eigenvalue problem in terms of local modes (T). The global modal matrix P"ST follows
from them.

In a continuous model, similar equations can be written except that w, S and P become
continuous functions of position.

2.4. RESPONSE PREDICTION: SUMMATION OF GLOBAL MODAL CONTRIBUTIONS

The physical response of the system is described in terms of the "nite number of retained
global modes of vibration. These global modes are found (1) for the baseline system from
a global modal analysis using component modes as described above and (2) for the other
systems in the sample by perturbing the modal properties of the baseline system as
described in the next section.

In a discrete model the physical degrees of freedom w are related to the global modal
degrees of freedom by

w"Py, (15)

where P is a transformation matrix, the global modal matrix. The jth column of P contains
the jth global mode shape in terms of physical degrees of freedom.

It is now assumed that time-harmonic forces F exp(iut) act on the system at a frequency
u. Here, it is assumed that the applied excitation is correlated. If, instead, uncorrelated,
random forces act on the system then the mean square response is found by summing the
mean square responses to each force acting alone. The resulting computations can be
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reordered to reduce much of the computation. This is the situation in reference [2], where
distributed, &&rain-on-the-roof '' excitation is applied to a whole subsystem. In practice, the
excitation will often be applied to only a small region of one subsystem, so that many
elements of F will be zero.

Suppose that there is (light) proportional damping. Under these circumstances the
response w can be found using a conventional global modal decomposition. The modal
forces become PTF. The modal amplitudes are

Y"diag(b
j
)PTF, (16)

where

b
j
"

1

(u2
j
(1#ig

j
)!u2)

(17)

is the modal receptance of the jth global mode of vibration. This mode has a natural
frequency u

j
and a loss factor g

j
.

The physical response is thus w"W exp(iut) where

W"aF, a"P diag(b
j
)PT, (18)

a being a matrix of receptances. Often the main interest will centre on the responses of only
a few degrees of freedom. Finally, if the excitation is broadband, the frequency average mean
square response of the kth degree of freedom=

k
can be found by averaging 1

2
D=

k
D2 over

frequency. Again, similar equations can be written for a continuous model.

2.5. VARIABILITY AND PERTURBATIONS: GLOBAL MODAL PROPERTIES

In general, the global modal analysis described in sections 2.1}2.3 would be
computationally expensive, even if the CMS approach were adopted. Thus, it would
be impractical to estimate the response statistics of the ensemble by choosing a sample
of systems whose properties are random and repeating this global analysis for each member
of the chosen sample. In this section, a "rst order perturbation is described which relates
small changes in the local modal eigenvalues of each subsystem to changes in the global
modal properties (i.e., the global natural frequencies and mode shapes). This enables the
global modal properties of each member of the sample to be found at a trivial
computational cost.

2.5.1. <ariability in subsystem properties

The properties in each subsystem are assumed to vary randomly. In general, this would
require information about the statistical properties (e.g., joint probability density functions)
of the subsystem properties. Here certain simplifying assumptions are made for
convenience.

First, it is assumed that the variations in the properties of one subsystem are independent
of those of the other subsystems. This is reasonable since subsystems are typically
manufactured by di!erent processes and then later assembled.

In principle, each ensemble-member subsystem could be de"ned in terms of its primitive
variables, i.e., its material and geometric properties. These would vary with some assumed
statistical distributions. The variability could be speci"ed by de"ning the distributions,
together with the relevant mean values, variances, covariances and so on. Equally, however,
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the ensemble could be de"ned in terms of the component modal properties, and particularly
the elements of the mass and sti!ness matrices in the component modal equations of motion
(equation (10)). This follows because the material and geometric properties implicitly de"ne
the component modal properties. Here the approach in which variability is de"ned in terms
of subsystem modal properties is adopted.

For simplicity, it is assumed here that the properties of the interfaces between subsystems
are deterministic, and hence do not vary across the ensemble (i.e., m

cc
and k

cc
are

deterministic) although this is not necessary for implementing the LM/P method. It is also
assumed that the subsystem coupling mass matrices m

fc
are deterministic. The subsystem

component modal natural frequencies, however, are assumed to vary randomly.
Consequently, the mass matrix M(i) is deterministic and so, too, are all the elements of K(i)

except for those diagonal entries which correspond to the "xed interface eigenvalues j(i)
j
.

Each member subsystem in the ensemble is therefore de"ned by its "xed interface
eigenvalues j(i)

j
, whose statistics (distributions, covariances, etc.) are assumed known. It is

also assumed that, in any single realization, the perturbation dj(i)
j

of j(i)
j

from the nominal

value that is assumed for the baseline system (i.e., j(i
j
) is small.

2.5.2. Perturbational relationship between local and global modal properties

The global eigenvalue problem in terms of component modal degrees of freedom q is
given in equation (10). Suppose there is a variation in some parameter k, on which M and
K depend. There is therefore a consequent variation in the global eigenvalues and
eigenvectors. In reference [6] it is shown that, to "rst order, the variation in the kth global
eigenvalue is

dj
k
"/T

k C
LK

Lk
!j

k

LM

Lk D/
k
dk, (19)

where /
k
is the kth eigenvector, that is, the kth column of T.

Under the assumptions of the previous subsection, the mass matrix M is deterministic
and is hence constant from one member of the sample to another, while those diagonal
elements of the sti!ness matrix K which correspond to the component modal eigenvalues
vary from one member to another. Thus, a variation dj(i)

j
in the jth component modal

eigenvalue produces a variation

dj
k
"(/

k
)2
j
dj(i)

j
(20)

in the kth global eigenvalue, where (/
k
)
j
"¹

jk
is the jth element of the kth global

eigenvector. Thus, a perturbation in a component modal eigenvalue gives a large (or small)
perturbation in a global eigenvalue if the corresponding component of the eigenvector is
large (or small). If all component modal eigenvalues are perturbed, the total perturbation in
the kth global eigenvalue is given by

dj
k
"+

j

(/
k
)2
j
dj(i)

j
. (21)

Expressions for the perturbations in the global eigenvectors are also given in reference [6].
For a variation dj(i)

j
in the jth component modal eigenvalue, the "rst order variation in the

kth global eigenvector becomes

d/
k
"A +

rOk

(/
k
)
j
(/

r
)
j

j
k
!j

r

/
rBdj(i)

j
. (22)
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The total "rst order perturbation in /
k

is obtained by summing the contributions from
perturbations in each component mode.

2.5.3. Monte Carlo simulation

A Monte Carlo simulation is "nally used to estimate the statistics of the responses of the
ensemble by choosing at random a sample of systems. For each member in the sample the
local modal eigenvalues are chosen at random and the perturbations in them thus found.
First order perturbations in the global eigenvalues and eigenvectors are then estimated
from equations (21) and (22). The global response is then found from these global modes.

The overall result of the local modal/perturbational approach is that the global
eigenproblem only needs to be solved once for the baseline system, the global modal
properties of other members of the ensemble being estimated at a trivial computational cost.

3. APPLICATION TO TWO COUPLED RODS

3.1. THE SYSTEM

In this section, the LM/P method is applied to the system comprising two, end-coupled
rods shown in Figure 2. Each rod forms one subsystem and undergoes axial vibration which
is excited by a time-harmonic force applied at various points in rod 1. The vibrational
velocity at a given location in rod 2 is found, with results for the transfer mobility being
given. Local co-ordinate axes x

i
are de"ned in each rod (i"1, 2). The density,

cross-sectional area, length and elastic modulus of each rod are o
i
, A

i
, l

i
and E

i
respectively.

The interface is where the end x
1
"l

1
in subsystem 1 is joined to the end x

2
"0 in

subsystem 2. A spring of sti!ness K
c
is attached to this junction.

In this particular case, the response w (x), the axial displacement of the rod, is
a continuous function. The equation of motion of the ith rod is

o
i
A

i

L2w
i

Lt2
!E

i
A

i

L2w
i

Lx2
i

"f (x
i
, t), (23)

where f is the applied force per unit length.
Figure 2. System comprising two rods undergoing axial vibrations.
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3.2. SUBSYSTEM MODES

The jth "xed interface (mass normalized) mode shape and natural frequency are found
from equation (23) with f"0 and subject to the boundary equations w

i
(0)"w

i
(l
i
)"0. They

are given by

/(i)
j

(x
i
)"S

2

o
i
A

i
l
i

sin
jnx

i
l
i

, u(i)
j
"S

E
i

o
i
A
jn
l
i
B, i"1, 2. (24)

The constraint mode shapes are

/(i)
c,0

(x
i
)"1!

x
i

l
i

, /(i)
c, l

(x
i
)"

x
i

l
i

. (25)

These result from prescribing a unit displacement at the ends x
i
"0 and l

i
respectively.

The submatrices of the component modal mass and sti!ness matrices (equation (6)) of the
ith subsystem are found by evaluating the integrals in equation (8). The mass submatrices
are given by

m(i)
cc
"P

li

0

o
i
A

i G
1!

x

l
i

x

l
i
H C1!x

l
i

x

l
i
Ddx"A

o
i
A

i
l
i

6 BC
2

1

1

2D,

m(i)T
fc

"P
li

0

o
i
A

iS
2

o
i
A

i
l
i G

1!
x

l
i

x

l
i
H Csinnx

l
i

sin
2nx

l
i

) ) ) ) ) )Ddx (26)

"A
J2o

i
A

i
l
i

n B
1

1

1

2
) ) ) )

1

j
) ) ) )

1

1
!

1

2
) ) ) )

!(!1)j

j
) ) ) )

,

while the coupling sti!ness matrix is

k(i)
cc
"P

li

0

E
i
A

i G
L/(i)

c,0
Lx

L/(i)
c,1

Lx H CL/(i)
c,0

Lx

L/(i)
c,1

Lx Ddx"A
E
i
A

i
l
i
BC

1

!1

!1

1 D. (27)

3.3. GLOBAL MODAL ANALYSIS

For this system, the vector of component modal degrees of freedom q (equation (9)) is
de"ned by

q"G
q(1)
f

q(2)
f
q
c
H , (28)
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where q(1)
f

and q(2)
f

are the amplitudes of the "xed interface modes (equation (24)) in rods
1 and 2, respectively, only a "nite number of these modes being retained. Also q

c
is the

displacement of the interface where the two rods are connected.
The two rods each contribute to the mass and sti!ness matrices of equation (10), the result

being found by assembling the contributions from each. Since in this system the far ends of
the rods remain "xed, only the constraint modes /(1)

c,1
(x

1
) and /(2)

c,0
(x

2
) are relevant.

Furthermore, only the second column of m(1)
fc

(equation (26)) and the "rst column of
m(2)

fc
then contribute to m

fc
. The sti!ness K

c
associated with the spring at the coupling also

contributes to K. The submatrices of M and K are then

m
cc
"

o
1
A

1
l
1
#o

2
A

2
l
2

3
, k

cc
"

E
1
A

1
l
1

#

E
2
A

2
l
2

#K
c
,

diag(j(i)
j
)"diagAdiagA

E
1

o
1
A
jn
l B

2

B, diagA
E
2

o
2
A
jn
l B

2

BB,

mT
fc
"C

J2o
1
A

1
l
1

n AC
1

1
!

1

2
2

!(!1)j

j
2DB

J2o
2
A

2
l
2

n AC
1

1

1

2
2

1

j
2DBD. (29)

The global modal properties are found numerically from an eigenanalysis of equation (10).

3.4. NUMERICAL EXAMPLES

3.4.1. System properties

The properties of the baseline system for which numerical results are presented are given
in Table 1. The two rods are identical except for their lengths. The lengths are chosen so that
the ratio l

1
/l
2
is irrational and the global modal density is 1 (i.e., on average N global modes

have natural frequencies at or below u"N). The spring sti!ness is such that the impedance
of the coupling equals the characteristic impedance of the rods at a frequency u"20. The
excitation and response points are such that all the local modes whose natural frequencies
lie in the frequency range under consideration are excited or respond (although some very
weakly).
TABLE 1

Physical and geometric properties of the baseline system

E
1
A

1
"E

2
A

2
1

o
1
A

1
"o

2
A

2
1

l
1 nJ26/8
l
2 n(1!J26/8)
g 0)01
Excitation point: x

1
0)245l

1
Response point: x

2
0)745l

2
K

c
40
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Following the component mode synthesis, 72 and 42 "xed interface subsystem modes
were retained for rods 1 and 2 respectively. Thus, there are 115 elements in the global
component modal vector q of equation (9). The eigenvalue problem of equation (10) was
solved using Matlab and 60 global modes of vibration retained for later calculation of the
response using equation (18). The numbers of modes are such that negligible errors are
introduced by truncating the modal sums.

In this example, the ensemble is de"ned by assuming that the jth eigenvalue in the ith
subsystem is given by

j(i)
j
"j(i)

j
(1#e(i)) (1#e(i)

j
), (30)

where j(i)
j

is the nominal value that is assumed for the baseline system and where e(i) and
e(i)
j

are small, random variables with zero mean, Gaussian distribution and with speci"ed
variances. The perturbation in this eigenvalue is then

dj(i)
j
"j(i)

j
(e(i)#e(i)

j
#e(i)e(i)

j
). (31)

The perturbation in j(i)
j

arises from two sources. First, there are fully correlated variations in
all the "xed interface eigenvalues for subsystem i as de"ned by e(i). Physically this might
arise, for example, because of uncertainties in the elastic modulus of the material from which
the subsystem is constructed, the result of which is that all the eigenvalues of that subsystem
change by the same proportion. Secondly, there are uncorrelated variations in the
individual eigenvalues as de"ned by the j random variables e(i)

j
. These might arise from

localized variations in geometric or material properties within a subsystem, for example.
The data use to de"ne the ensemble is given in Table 2. The values for the standard
deviations of the parameters e give coe$cients of variation (i.e., the standard deviation
divided by the mean) of about 2% for the global natural frequencies.

3.4.2. ¹he response of the baseline system

The FRF (transfer mobility k) of the baseline system is shown in Figure 3. Clear
resonances can be seen. The asymptotic modal density of the system is n (u)"1, while the
bandwidth of the jth mode is D

j
"u

i
g+jg. Thus, the modal overlap M"nD"0)01u is

smaller than 1 in the frequency range shown. The general level of the response tends to be
lower in certain frequency bands. First, these may be where the excitation point is close to
an integer multiple of half a wavelength from the "xed end at x

1
"0: in this case the

excitation point tends to lie close to nodal points of the modes which are resonant in these
frequency ranges. These frequency ranges occur around integer multiples of u"6)5.
Secondly, similar mode shape coherence e!ects occur when the response point is close to an
TABLE 2

Statistical properties of the ensemble

Parameter Standard deviation

e(1) 0)02
e(1) 0)02
e(1)
j

0)02
e(2)
j

0)02



Figure 3. FRF (transfer mobility) of baseline system.

Figure 4. FRFs of 20 di!erent realizations of the system.
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integer multiple of half a wavelength from the "xed end at x
2
"l

2
. These frequency ranges

are around integral multiples of u"11.

3.4.3. FRF statistics

A Monte Carlo simulation was performed using a sample of 200 systems. For
each member in the sample the parameters e in equation (31) were chosen at random
and the perturbations in the local modal eigenvalues thus found. The FRFs of each
member of the sample were estimated from a full global modal analysis and also using
the LM/P method. The global modal analyses provide an accurate estimate of the ensemble
statistics against which the approximate estimates of the LM/P method can be compared.

The discrete frequency responses of 20 members of the sample are shown in Figure 4. For
the parameters used, the standard deviation of the uncertainty du

j
in the jth global natural

frequency u
j

is approximately du
j
+0)02u

j
. This amount of variability has been

deliberately chosen to demonstrate the e!ects of variability in system properties and to
show the transition from low to high-frequency behaviour.

At low frequencies the responses of all systems are almost the same: this is the &&low
frequency'' region where a deterministic analysis of the baseline system provides acceptably
accurate estimates of the responses of all systems in the sample. At higher frequencies
individual FRFs become more spread out, so that the ensemble responses as a whole do not
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show distinct resonant behaviour, even though every single ensemble member does so.
Nevertheless, there are still broad trends in the response at higher frequencies.

An &&acoustic limit'' or &&uncertainty horizon'' can be identi"ed as the frequency where the
&&statistical overlap'' equals 1; that is, where the typical uncertainty in a speci"c natural
frequency (say, plus or minus one standard deviation) becomes equal to the average modal
spacing. For this system, this occurs at around the 25th natural frequency. Here, for
example, the 25th natural frequency of one member system may occur at a higher frequency
than the 26th natural frequency of another member of the ensemble. Beyond this
uncertainty horizon the amount of variability in the ensemble is large enough (in a dynamic
sense) for there to be no real value in making deterministic predictions.

Figures 5}7 show estimates of various statistics of DkD2obtained from full global modal
analyses and using the LM/P method. The variability in FRFs increase with increasing
frequency because the dynamics become increasingly sensitive to uncertainty in the system's
parameters. This variability is particularly noticeable here because the system is resonant
and has low modal overlap. At higher frequencies the resonant frequencies of individual
systems become more spread out, so that the ensemble statistics tend not to show distinct
resonant peaks, even though every single ensemble member does so. Finally, it is perhaps
worth noting that di!erent members will have the minimum (or maximum) responses in
di!erent frequency bands: one member will typically have a low response in one band and
a high response in another.

Because the damping is light enough and the modal overlap small, the mean response is
signi"cantly greater than the median, the mean at any particular frequency being strongly
Figure 5. Ensemble FRF statistics using (a) full modal analysis and (b) LM/P method: 25th percentile, median,
75th percentile.



Figure 6. Ensemble FRF statistics using (a) full modal analysis and (b) LM/P method: 10th percentile, mean,
90th percentile.

Figure 7. Ensemble FRF statistics using (a) full modal analysis and (b) LM/P method: minimum, mean and
maximum.
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weighted by the relatively few ensemble member systems which happen to be resonant at
that frequency.

The LM/P estimates agree very closely with those based on 200 full global modal
analyses but are obtained for very little cost. The mean and quartiles in particular show very
close agreement. The main di!erences arise in estimating the &&tails'' of the FRF distribution,
for example in the 10th and 90th percentiles and in the minimum and maximum values of
the FRFs. This is primarily due to the di$culty in capturing the outlying resonant and
antiresonant responses equally with a sample of only moderate size (200 members), since
these responses occur rarely. This also accounts for the rather &&ragged'' nature of the
estimates of the minimum and maximum FRFs.

4. CONCLUDING REMARKS

This paper concerned an approach to &&mid-frequency'' vibration analysis which used
a local modal/perturbational approach. It provides a method of estimating FRF statistics in
structures with uncertain parameters. The estimates are provided at very little
computational cost above that required for the local and global modal analyses of the
baseline system. The LM/P approach is applicable when levels of uncertainty and/or
variability are such that neither low frequency, deterministic, &&exact'' predictions nor high
frequency, statistical, &&broad-brush'' estimates are entirely appropriate.

The method requires data concerning subsystem variability. Here, variability is de"ned in
terms of subsystem natural frequencies rather than primitive variables (density, thickness,
etc.). The two are of course uniquely related. De"ning variability in terms of subsystem
natural frequencies may have advantages, however. First, the primitive variables are
continuous random "elds de"ned over the subsystem and their spatial correlation and
cross-correlation would often be extremely di$cult to quantify. However, only a "nite
number of subsystem natural frequencies are important in a given frequency band, and the
measurement of their statistics may be more tractable. Secondly, the computational cost
becomes very small, since the perturbational approach may be used. Finally, if the statistics
of the primitive variables are known then those of the subsystem natural frequencies can
easily be found using conventional stochastic "nite element methods [4].

In the numerical example some quite sweeping assumptions were made regarding
the statistics of the local modes. It is not known to what extent these assumptions
de"ne a realistic ensemble, since little experimental data are available regarding typical
statistics. Equally, however, little data exist on the statistics of variability of the material and
geometric properties themselves, especially their spatial dependencies and covariances.
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APPENDIX A: NOMENCLATURE

A rod cross-sectional area
E elastic modulus
f, f applied force, discrete and continuous models
F vector of amplitudes of applied forces
i, j subsystem number
k sti!ness sub-matrix
K sti!ness matrix
K sti!ness of coupling spring between rods
l rod length
¸ di!erential operator
m mass sub-matrix
M modal overlap
M mass matrix
n asymptotic modal density
P global modal matrix (w"Py)
q vector of component modal degrees of freedom
S component modal matrix (w"Sq)
T local/global modal transformation matrix (q"Ty)
w, w physical response, discrete and continuous models
x position
y global modal d.o.f.s

a receptance
b modal receptance
D modal bandwidth
e random perturbation
g damping loss factor
j eigenvalue
j(i)
j

mean value of jth component modal eigenvalue of the Ith subsystem
k perturbation parameter
o density
/ mode shape vector
u frequency
u

j
jth natural frequency

Superscripts

i ith subsystem

Subscripts

w physical (response) co-ordinate system
f "xed interface modes
c constraint modes
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